Supplementary Materials: Proofs

Proposition 1

Let there be n genes with independent bivariate ranks $\left(R_{g}^{x}, R_{g}^{y}\right)$ and maximum rank statistics $M_{g}, g=$ $1, \ldots, n$. Define the random variable:

$$
W_{n}(i)= \begin{cases}2 & \text { if } i \text { is twice a maximum rank } \tag{1}\\ 1 & \text { if } i \text { is a unique maximum } \\ 0 & \text { if } i \text { is not a maximum rank }\end{cases}
$$

We calculate $E\left[W_{n}(i)\right]$ because $P\left(M_{g}=i\right)=E\left[W_{n}(i)\right] / n$.
Consider the probability mass function of $W_{n}(i)$.

$$
\begin{align*}
P\left(W_{n}(i)=2\right) & =P\left(\exists g:\left(R_{g}^{x}, R_{g}^{y}\right) \in\{(l, i): l<i\} \text { and } \exists h:\left(R_{h}^{x}, R_{h}^{y}\right) \in\{(i, l): l<i\}\right) \\
& =\frac{i-1}{n} \cdot \frac{i-1}{n-1} \\
& =\frac{(i-1)^{2}}{n(n-1)} \tag{2}\\
P\left(W_{n}(i)=1\right)= & P\left(\exists g:\left(R_{g}^{x}, R_{g}^{y}\right)=(i, i)\right) \\
& +P\left(\exists g:\left(R_{g}^{x}, R_{g}^{y}\right) \in\{(l, i): l<i\} \text { and } \exists h:\left(R_{h}^{x}, R_{h}^{y}\right) \in\{(m, i): m>i\}\right) \\
& +P\left(\exists g:\left(R_{g}^{x}, R_{g}^{y}\right) \in\{(l, i): l>i\} \text { and } \exists h:\left(R_{h}^{x}, R_{h}^{y}\right) \in\{(m, i): m<i\}\right) \\
= & \frac{1}{n}+\frac{i-1}{n} \cdot \frac{n-i}{n-1}+\frac{i-1}{n} \cdot \frac{n-i}{n-1} \\
= & \frac{-n-1+2(n+1) i-2 i^{2}}{n(n-1)} \tag{3}\\
P(W n(i)=0)= & 1-P\left(W_{n}(i)=2\right)=P\left(W_{n}(i)=1\right) \\
& =\frac{n^{2}+i^{2}-2 n i}{n(n-1)} \tag{4}
\end{align*}
$$

Then the expectation of $W_{n}(i)$ can be determined under the null.

$$
\begin{align*}
E\left(W_{n}(i)\right) & =0 \cdot P\left(W_{n}(i)=0\right)+1 \cdot P\left(W_{n}(i)=1\right)+2 \cdot P\left(W_{n}(i)=2\right) \\
& =\frac{-n-1+2(n+1) i-2 i^{2}}{n(n-1)}+\frac{2(i-1)^{2}}{n(n-1)} \\
& =\frac{2 i-1}{n} \tag{5}
\end{align*}
$$

Thus the marginal probability mass function is known.

$$
P\left(M_{g}=i\right)=\frac{1}{n} E\left(W_{n}(i)\right)= \begin{cases}\frac{2 i-1}{n^{2}} & \text { for } i=1, \ldots, n \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

The marginal pmf for M_{h} / n is thus

$$
f_{n, 0}(i / n)=P\left(M_{h}=i\right)= \begin{cases}\frac{2 i-1}{n^{2}} & \text { for } i=1, \ldots, n \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

Corollary 1

Assume (I1), (I2), and (I3). Further assume $\pi_{1} \in(0,1)$ is fixed, and let $j_{\pi_{1}}=\left\lfloor n \pi_{1}\right\rfloor$. Then the marginal pmf of M_{h} / n for an irreproducible gene h is $f_{n, \pi_{1}}(i / n)=f_{n-j_{\pi_{1}, 0}}\left(i / n-j_{\pi_{1}}\right)$:

$$
f_{n, \pi_{1}}(i / n)= \begin{cases}\frac{2\left(i-j_{\pi_{1}}\right)-1}{\left(n-j_{\pi_{1}}\right)^{2}} & \pi_{1}<i / n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 2

Let $\pi_{1} \in(0,1), x \in\left(\pi_{1}, 1\right)$, and $i_{x}=\lfloor n x\rfloor$. Then we can derive the marginal cumulative distribution function of M_{h} / n in the ideal setting:

$$
\begin{aligned}
F_{n, \pi_{0}}(x) & =P\left(M_{h} / n \leq x\right) \\
& =P\left(\pi_{1}<M_{h} / n \leq x\right)=\sum_{i=j_{\pi_{1}}}^{k_{x}} P\left(M_{h}=i\right) \\
& =\sum_{i=j_{\pi_{1}}+1}^{k_{x}} \frac{2\left(i-j_{\pi_{1}}\right)-1}{\left(n-j_{\pi_{1}}\right)^{2}}=\frac{1}{\left(n-j_{\pi_{1}}\right)^{2}}\left(2 \sum_{i=j_{\pi_{1}+1}}^{k_{x}}\left(i-j_{\pi_{1}}\right)-\sum_{i=j_{\pi_{1}}+1}^{k_{x}} 1\right) \\
& =\frac{1}{\left(n-j_{\pi_{1}}\right)^{2}}\left(2 \frac{\left(k_{x}-j_{\pi_{1}}\right)\left(k_{x}-j_{\pi_{1}}+1\right)}{2}-\left(k_{x}-j_{\pi_{1}}\right)\right) \\
& =\frac{1}{\left(n-j_{\pi_{1}}\right)^{2}}\left(k_{x}-j_{\pi_{1}}\right)\left(k_{x}-j_{\pi_{1}}+1-1\right) \\
& =\frac{\left(k_{x}-j_{\pi_{1}}\right)^{2}}{\left(n-j_{\pi_{1}}\right)^{2}}
\end{aligned}
$$

Theorem 1

Let $\pi_{1} \in(0,1)$, and $x \in(0,1)$ be fixed, and assume (I1), (I2), and (I3). For a fixed n, let $k_{x}=\lfloor n x\rfloor$, and $j_{\pi_{1}}=\left\lfloor n \pi_{1}\right\rfloor$. Then as n tends to infinity:

$$
\lim _{n \rightarrow \infty} j_{\pi_{1}} / n \rightarrow \pi_{1}, \text { and } \lim _{n \rightarrow \infty} k_{x} \rightarrow x
$$

Thus the limiting cumulative distribution function can be derived.

$$
\begin{aligned}
F_{n, \pi_{1}}(x) & =\frac{\left(k_{x}-j_{\pi_{1}}\right)^{2}}{\left(n-j_{\pi_{1}}\right)^{2}}=\frac{\left(k_{x}-j_{\pi_{1}}\right)^{2} / n^{2}}{\left(n-j_{\pi_{1}}\right)^{2} / n^{2}} \\
& =\frac{\left(k_{x} / n-j_{\pi_{1}} / n\right)^{2}}{\left(n / n-j_{\pi_{1}} / n\right)^{2}} \\
& \rightarrow \frac{\left(x-\pi_{1}\right)^{2}}{\left(1-\pi_{1}\right)^{2}}
\end{aligned}
$$

Theorem 2

Assume π_{1} is fixed, $\hat{\pi}_{1}, \hat{S}_{n}(x), S_{n}(x)$, and $M S E_{n}(\lambda)$ are as defined in the manuscript. We define the quantity

$$
S S(\lambda)=(1-\lambda)^{-1} \int_{\lambda}^{1}\left(\hat{S}_{n}(x)-(1-\lambda) S_{\lambda}(x)\right)^{2} d x
$$

and show that $\arg \min \left\{M S E_{n}(\lambda)\right\}=\arg \min \{S S(\lambda)\}$. Then the proof outline to show $\hat{\pi}_{1} \rightarrow \pi_{1}$ is as follows:

1. Show that the random variables M_{h} are absolutely regular.
2. Use result from Nobel and Dembo (1993) and apply the Glivenko-Cantelli theorem to show that $S S\left(\pi_{1}\right) \rightarrow 0$ as $n \rightarrow \infty$.
3. Show $S S(\lambda) \nrightarrow 0$ for $\lambda \neq \pi_{1}$.
4. Use (2) and (3) to prove consistency.

We now proceed with the proof outlined above.

$$
\begin{aligned}
S S(i / n) & =(1-i / n)^{-1} \int_{i / n}^{1}\left(\hat{S}_{n}(x)-(1-i / n) S_{i / n}(x)\right)^{2} d x \\
& \approx(1-i / n)^{-1} \sum_{x=i}^{n}\left(\hat{S}_{n}(x / n)-(1-i / n) S_{i / n}(x / n)\right)^{2} \\
& =n \frac{1}{n-1} \sum_{x=i}^{n}\left(\hat{S}_{n}(x / n)-(1-i / n) S_{i / n}(x / n)\right)^{2} \\
& =n \cdot M S E(i / n) \\
\Rightarrow & \underset{i}{\arg \min }\{M S E(i / n)\}=\underset{i}{\arg \min }\{S S(i / n)\}
\end{aligned}
$$

1. Following Nobel and Dembo (1993), a sequence of random variables X_{1}, \ldots, X_{N} is absolutely regular if the dependence coefficients $\beta(n), n=1,2 \ldots$ go to 0 , where

$$
\beta(n)=\sup _{A \in \sigma\left(X_{1}, \ldots, X_{k}, X_{n+1+1}, \ldots\right)}\left|P(X)-P_{0}^{k}(X) P_{n+k+1}^{\infty}(A)\right|
$$

Here, P is based on the full joint distribution, and $P_{1}^{\infty}, P_{-\infty}^{0}$ are joint distributions for $X_{-\infty}, \ldots, X_{0}$ and $X_{1} \ldots, X_{\infty}$ respectively and independently. Because the M_{h} have possible values $1, \ldots, N$, we must let n and N go to ∞ together. Thus set $N=n^{2}$ and consider the asymptotic behavior of the dependence coefficients below:

$$
\begin{aligned}
\beta(n) & =\sup _{A \in \sigma\left(M_{1}, \ldots, M_{k}, M_{n+1}, \ldots, M_{N}\right)}\left|P(A)-P_{0}^{k}(A) P_{n+k+1}^{N}(A)\right| \\
& \leq\left|1-P\left(\left(A_{1}, \ldots, M_{k}, M_{n+1}, \ldots, M_{N}\right)=(1,2, \ldots, N-n)\right)\right| \\
& =\left|1-\sum_{i=1}^{N-n} P\left(M_{h}=i\right)\right|=\left|1-\frac{(N-n)^{2}}{N^{2}}\right| \\
& =\left|1-\left(1+\frac{n^{2}-2 n}{N^{2}}\right)\right| \\
& =\frac{n^{2}-2 n}{N^{2}} \\
& \rightarrow 0
\end{aligned}
$$

Because $\beta(n) \rightarrow 0$, we see that the M_{h} are absolutely regular.
2. By Novel and Dembo (Nobel and Dembo, 1993), the Glivenko-Cantelli theorem holds for M_{h} / n using the marginal distribution. Using the result from Theorem 1 in combination with the

Glivenko-Cantelli theorem the following holds:

$$
\begin{aligned}
& \sup _{x \in\left(\pi_{1}, 1\right)}\left|\hat{S}_{n}(x)-\pi_{0} S_{\pi_{0}}(x)\right| \stackrel{\text { a.s. }}{ } 0 \\
\Rightarrow & \int_{\pi_{1}}^{1}\left(\hat{S}_{n}(x)-\pi_{0} S_{\pi_{0}}(x)\right)^{2} d x \xrightarrow{\text { a.s. }} 0 \\
\Rightarrow & S S\left(\pi_{1}\right) \rightarrow 0
\end{aligned}
$$

3. For an ideal setting where the proportion of reproducible signals is $\pi_{1}^{*} \neq \pi_{1}$,

$$
\hat{S}_{n}(x) \rightarrow S_{\pi_{1}^{*}}(x)
$$

and $\exists x \in\left(\pi_{1}, 1\right)$ such that $S_{\pi_{1}}(x) \neq S_{\pi_{1}^{*}}(x)$. Because $S_{\pi_{1}}(x), S_{\pi_{1}^{*}}(x)$ are continuous,

$$
\int_{\pi_{1}}^{1}\left(\hat{S}_{n}(x)-\pi_{0} S_{\pi_{0}}(x)\right)^{2} d x \nrightarrow 0 \Rightarrow S S\left(\pi_{1}\right) \neq 0
$$

4. Thus by (1), (2), (3) above,

$$
\hat{\pi}_{1}=\underset{\lambda \in(0,1)}{\arg \inf }\{S S(\lambda)\} \rightarrow \pi_{1}
$$

Justification of assertion $E\left[\hat{\pi}_{1}\right] \leq \pi_{1}$

Assume the proportion of reproducible signals is π_{1}, and that of irreproducible signals is $\pi_{0}=1-\pi_{1}$. Additionally assume:
(R1) Reproducible signals tend to be ranked higher than irreproducible signals. Thus if gene g is reproducible and gene h is irreproducible,

$$
\left.P\left(R_{g}^{x}<R_{h}^{x}\right)>1 / 2, \text { and } P\left(R_{g}^{y}<R_{h}^{y}\right)>1 / 2\right) .
$$

(I2) The correlation between the ranks of reproducible signals is non-negative. Thus for any reproducible gene g,

$$
\operatorname{Cor}\left(R_{g}^{x}, R_{g}^{y}\right) \geq 0
$$

(I3) The correlation between ranks of irreproducible signals is 0 . Thus for any irreproducible gene h,

$$
\operatorname{Cor}\left(R_{h}^{x}, R_{h}^{y}\right)=0
$$

The justification hinges on the following:

1. If $\lambda_{1} \leq \lambda_{2}$ then $\left(1-\lambda_{1}\right) S_{\lambda_{1}}(x) \geq\left(1-\lambda_{2}\right) S_{\lambda_{2}}(x) \forall x \in\left(\lambda_{2}, 1\right)$.
2. $E\left(\hat{S}_{n}(x)\right) \geq\left(1-\pi_{1}\right) S_{\pi_{1}}(x)$ for $x \in\left(\pi_{1}, 1\right)$.

Based on these two statements, it is clear that $\lambda^{*} \leq \pi_{1}$ exists such that

$$
E\left[M S E_{n}\left(\lambda^{*}\right)\right] \leq E\left[M S E_{n}\left(\pi_{1}\right)\right]
$$

and thus based on the definition of $\hat{\pi}_{1}$ as the argument that gives the first local minimum of the $M S E_{n}(\lambda), E\left[\hat{\pi}_{1}\right] \leq \pi_{1}$.

To prove (1) assume $\lambda_{1}<\lambda_{2}$. Then consider the quantity

$$
\begin{aligned}
\left(1-\lambda_{1}\right) f_{\lambda_{1}}(x)-\left(1-\lambda_{2}\right) f_{\lambda_{2}(x)} & =\frac{2\left(x-\lambda_{1}\right)}{1-\lambda_{1}}-\frac{2\left(x-\lambda_{2}\right)}{1-\lambda_{2}} \\
& =\frac{2}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)}\left(\left(x-\lambda_{1}\right)\left(1-\lambda_{2}\right)-\left(x-\lambda_{2}\right)\left(1-\lambda_{1}\right)\right) \\
& =\frac{2}{\left(1-\lambda_{1}\right)\left(1-\lambda_{2}\right)} \cdot\left(\lambda_{1}-\lambda_{2}\right) \cdot(x-1) \\
& =(+) \cdot(-) \cdot(-) \\
& >0
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(1-\lambda_{1}\right) S_{\lambda_{1}}(x)-\left(1-\lambda_{2}\right) S_{\lambda_{2}}(x) & =\int_{x}^{1}\left(1-\lambda_{1}\right) f_{\lambda_{1}}(x)-\left(1-\lambda_{2}\right) f_{\lambda_{2}(x)} d x \\
& >\int_{x}^{1} 0 d x \\
& =0
\end{aligned}
$$

Therefore

$$
\left(1-\lambda_{1}\right) S_{\lambda_{1}}(x)>\left(1-\lambda_{2}\right) S_{\lambda_{2}}(x)
$$

To justify (2):
Note that we use the term 'justify' in place of 'prove'. This substitution is intentional, as a formal proof would require further assumptions about the distribution of reproducible signals. In this justification we outline why the claim that $E\left(\hat{S}_{n}(x)\right) \geq\left(1-\pi_{1}\right) S_{\pi_{1}}(x)$ for $x \in\left(\pi_{1}, 1\right)$ is reasonable. In the discussion below, let $S(x)$ be the underlying survival function for some mixture distribution
$\pi_{1} g(x)+\left(1-\pi_{1}\right) f(x)$, where g, f give the marginal distributions of M_{g} / n for reproducible and irreproducible signals respectively.

Consider the appropriately weighted theoretical survival function dependent on π_{1}, evaluated at $\pi_{1}:\left(1-\pi_{1}\right) S_{\pi_{1}}\left(\pi_{1}\right)=1-\pi_{1}$. In the idealistic setting, the survival function must go through the point $\left(\pi_{1}, 1-\pi_{1}\right)$. In the realistic setting, however, $P\left(M_{g} / n>\pi_{1}\right)>0$. Thus $S\left(\pi_{1}\right)>\left(1-\pi_{1}\right) S_{\pi_{1}}\left(\pi_{1}\right)$. This fact places the expected empirical survival curve above the theoretical survival curve at the key input π_{1}. Further, as the effect size decreases, $P\left(M_{g} / n>\pi_{1}\right)$ increases, in turn increasing the difference between $S\left(\pi_{1}\right)$ and $\left(1-\pi_{1}\right) S_{\pi_{1}}\left(\pi_{1}\right)$.

The same reasoning holds for $x>\pi_{1}$. For any effect size $P\left(M_{g} / n>x\right)>0$, inflating $S(x)$ above $\left(1-\pi_{1}\right) S_{\pi_{1}}(x)$. For small effect sizes this is particularly noticeable. For this reason, survival curves from data sets with smaller effect sizes more closely resemble theoretical curves calculated using a smaller reproducible component.

Outline of derivation for higher-order procedure based on Maximum of three ranks

Assume three independently ranked experiments for the same n signals. Further assume that all signals are independent (completely irreproducible). Thus for each signal g, there are three ranks: $M_{g}^{x}, M_{g}^{y}, M_{g}^{z}$. Define the maximum rank as

$$
M_{g}^{(3)}=\max \left\{M_{g}^{x}, M_{g}^{y}, M_{g}^{z}\right\}
$$

Define the random variable $W_{n}(i)^{(3)}$ in similar fashion to $W_{n}(i)$ in Proposition 1:

$$
W_{n}^{(3)}(i)= \begin{cases}3 & \text { if } i \text { is thrice a maximum rank } \tag{8}\\ 2 & \text { if } i \text { is twice a maximum rank } \\ 1 & \text { if } i \text { is a unique maximum } \\ 0 & \text { if } i \text { is not a maximum rank }\end{cases}
$$

Derivation of a three-dimensional MaRR procedure using the maximum proceeds by the following steps:

1. Determine the marginal probability mass function of $W_{n}^{(3)}(i)$.
2. Use the fact that $P\left(M_{g}^{(3)}=i\right)=E\left(W_{n}^{(3)}\right) / n$ to define a marginal pmf for $M_{g}^{(3)}: f_{n, 0}^{(3)}(i / n)$, similar to the marginal $\operatorname{pmf} f_{n, 0}(i / n)$ in Proposition 1.
3. Assume ideal conditions
(I1) Reproducible signals are always ranked higher than irreproducible signals for all three experiments.
(I2) Correlation between ranks of reproducible signals is non-negative.
(I3) The three ranks per irreproducible gene are independent.
and derive marginal mass function $f_{n, \pi_{1}}^{(3)}(i / n)$ dependent on π_{1}, the proportion of signals consistent across all three experiments
4. Calculate corresponding marginal cumulative distribution and survival functions, $F_{n, \pi_{1}}^{(3)}$ and $S_{n, \pi_{1}}^{(3)}$
5. Derive limiting distributions $F_{\pi_{1}}^{(3)}, S_{\pi_{1}}^{(3)}$ as $n \rightarrow \infty$.
6. Define a loss function dependent on π_{1} similar to $S S(\lambda)$:

$$
S S_{\lambda}^{(3)}=\frac{1}{1-\lambda} \int_{\lambda}\left(\hat{S}_{n}^{(3)}(x)-(1-\lambda) S_{\lambda}^{(3)}(x)\right)^{2} d x
$$

where $\hat{S}_{n}^{(3)}(x)$ is the empirical survival function for $M_{g}^{(3)}$.
7. Define a new estimate $\hat{k}=\operatorname{argmin}_{i}\{S S(i / n)\}$.
8. Estimate mFDR using for rejection region $f_{n, \hat{k} / n}^{(3)}$.

Figure for top k genes

The below figure shows the rank of method-specific PCR genes in the top k (5000, 10000, and 25000) for only MaRR (light gray) or for only the copula mixture model (dark gray) for comparisons 1-6 of the SEQC data. Horizontal lines indicate median values. PCR genes with lower-valued ranks are more highly expressed.

method
O- MaRR
으 Copula
method
O- MaRR
O Copula

method
OO MaRR
OCopula

References

A. Nobel and A. Dembo. A note on uniform laws of averages for dependent processes. Statistics and Probability Letters, 1993.

